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While specialized Al models excel at isolated video tasks like generation or understanding, real-world
applications demand complex, iterative workflows that combine these capabilities. To bridge this gap,
we introduce UniVA, a multi-agent framework for universal video intelligence generalist that unifies
video understanding, segmentation, editing, and generation in complex workflows. UniVA employs
a Plan-and-Act dual-agent architecture: a planner agent decomposes high-level user requests into a
sequence of video-processing steps, and executor agents carry out these steps using specialized modular
tool servers (for video analysis, generation, editing, object tracking, etc.). Through a multi-level
memory design (global knowledge, task context, and user-specific memory), UniVA supports long-
horizon reasoning and inter-agent communication while maintaining full traceability of each action.
This design enables iterative and composite video workflows (e.g., image — video generation — video
editing — object segmentation — content composition) that were previously cumbersome to achieve
with single-purpose models or monolithic video-language models. We also introduce UniVA-Bench,
a benchmark suite of multi-step video tasks spanning understanding, editing, segmentation, and
generation, to rigorously evaluate such agentic video systems. Both UniVA and UniVA-Bench are
open-sourced to the community, with the aim of catalyzing next-generation video intelligence research.
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1 Introduction

Real-world video applications often require composite, iterative workflows that go beyond any single Al
capability (Yu et al., 2023; Maazi et al., 2024; Song et al., 2024). For example, creating a dynamic visual
story might begin with an image or text concept, expand into a generated video, then involve editing that
video, segmenting key objects, and finally composing multiple elements into a polished scene. Traditionally,
accomplishing such a pipeline requires stitching together disparate tools—each specialized for a narrow
task—resulting in a brittle, labor-intensive process. The lack of a unified system for reasoning across multiple
video tasks and steps has become a critical bottleneck for next-generation video intelligence.

Existing approaches address parts of this challenge but fall short of a comprehensive solution. Single-task
video models (e.g., dedicated networks for segmentation or video generation) deliver high performance
on their specific tasks, yet they operate in isolation and fail to handle multi-step goals without manual
coordination. More recently, video-language foundation models like VILA-U (Wu et al., 2024b) attempt
to integrate understanding and generation into one model. These large models learn a broad spectrum of
abilities (Fei et al., 2024; Xie et al., 2025; Tan et al., 2025), but they remain monolithic and inflexible — they
cannot easily incorporate new tools or modular functions, and leveraging them for complex workflows can be
inefficient or impractical. Another emerging direction is to use LLM-based agents with tool use. For instance,
HuggingGPT employs a language model as a controller to plan tasks and invoke appropriate models/tools
in sequence (Shen et al., 2023). Similarly, VideoAgent leverages an LLM with a structured memory and
a predefined set of video tools to answer questions on long videos (Fan et al., 2024b). These agent-based
systems illustrate the power of planning and tool integration (Kugo et al., 2025; Wei et al., 2025). However,
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HuggingGPT is a generalist framework not specialized for detailed video operations, and VideoAgent focuses
mainly on video understanding queries (e.g., Q&A) with limited editing or generation capabilities. To date,

no

existing platform fully supports a unified, end-to-end agentic workflow that spans all key facets of video

content creation and analysis.

To bridge this gap, we propose UniVA (Universal Video Agents), a unified multi-agent video AI platform that

(S28%

ables complex multi-step video creation and manipulation tasks. Technically, UniVA can be depicted by

two key characters:

Highly automated, interactive, proactive user experience: UniVA is built on a Plan/Act dual agent architecture:
a planner agent first interprets the user’s request and decomposes it into a sequence of actionable steps, and
an executor agent (or a team of specialized agents) then carries out each step by invoking the appropriate
video tool modules. This separation of planning and acting (in line with recent agent design patterns)
allows the system to look ahead and reason about long-horizon goals, while flexibly adapting the plan
if intermediate results require changes. On one hand, with strong planning capabilities, UniVA can
autonomously accomplish an entire video production pipeline from a single user query. On the other
hand, agents communicate and share information through a multi-level memory mechanism: a global
memory stores persistent knowledge and facts (e.g. general video facts or precomputed embeddings), a
task-specific memory retains context and intermediate results for the current workflow, and a user memory
keeps track of user preferences or historical interactions. This hierarchical memory design ensures that
context is maintained throughout the workflow, enabling continuity and avoiding forgetting important
details mid-task. In this way, UniVA also supports iterative, multi-round interactions, enabling deeply
immersive and dynamic creative experiences.



e Comprehensive, industrial-level video production capabilities: Built upon the Model Context Protocol (MCP)
, UniVA can seamlessly integrate state-of-the-art video functional modules—either open-source or API-
based—in a plug-and-play fashion, where each tool module is implemented as a modular server and the
two agents act as the client. The tool hub spans three major categories: video tools (e.g., generation,
understanding, editing), non-video tools (e.g., audio or image operation), and non-Al tools (e.g., video
cutting). This broad coverage encompasses nearly all functionalities required in the video production
process. For example, UniVA supports video generation/transformation from arbitrary conditions, e.g.,
text, image or video. By combining with cutting-edge external video generation models, UniVA enables
cinematic-quality production of long, complex, and narrative-rich videos. Under the MCP framework, the
system can also be effortlessly extended to incorporate new tools and capabilities.

To evaluate such systems, we release UniVA-Bench, a suite of multi-step video tasks spanning understanding,
segmentation, editing, and generation. Tasks are specified as goal cards with gold artifacts (e.g., evidence
spans, masks, EDLs) and scored with both task metrics and agentic metrics (plan quality, tool-routing
efficiency, memory use, trace completeness). UniVA-Bench is designed to test compositionality, tool swaps,
and long-form reasoning—not just per-task accuracy. Code, benchmark, and evaluators are all open-sourced.

In summary, our contributions are threefold: (1) We present UNIVA, a novel agent-based framework that
unifies video tasks in a single open platform. UNIVA’s plan/act dual-agent architecture with multi-level
memory enables it to perform complex, iterative video tasks that were infeasible for previous methods. (2)
We develop cross-modal and cross-task integration techniques within UNIVA, demonstrating how information
from one video modality can enhance another — a form of tool synergy that improves outcome quality and
coherence. (3) We release UNIVA-Bench, the first benchmark to assess an agent’s competency across a
broad range of video tasks and their compositions. Ultimately, UNIVA moves the field closer to interactive,
next-generation video intelligence that is both highly capable and reproducible.

2 Related Work

Various Video Tasks. Videos serve as realistic simulations of the physical world, and research on video
intelligence has spanned tasks such as action recognition, event detection, captioning, retrieval, and video

question answering (Tran et al., 2015; Xu et al., 2015; Yang et al., 2023; Wu et al., 2023b; Le et al., 2020). With
the advent of large language models (LLMs), video understanding has advanced toward instruction-following
and long-context reasoning (Maaz et al., 2024; Lin et al., 2024), while fine-grained tasks such as segmentation,

grounding, and object parsing offer pixel-level insights (Cheng et al., 2023; Lei et al., 2020; Jin et al., 2022). In
parallel, video generation has progressed from autoregressive models, such as VideoGPT (Yan et al., 2021), to
diffusion-based methods, including Imagen Video, Make-A-Video, and Runway Gen-2 (IHo et al., 2022; Singer
et al., 2022; Runway, 2023), which have achieved improved fidelity and temporal coherence. Recent work
also explores controllable synthesis via conditional inputs (Ni et al., 2023; Ma et al., 2024) and semantic-level
video editing through diffusion- and instruction-driven pipelines (Wu et al., 2023a; Khachatryan et al., 2023;
Liu et al., 2024). Despite remarkable progress, most systems remain fragmented and task-specific, which
limits their interoperability and scalability.

Toward Unified Video Models. To address fragmentation, unified video foundation models aim to integrate diverse
tasks into a single framework. Joint models such as Show-02 and Omni-video (Xie et al., 2025; Tan et al., 2025)
combine understanding and generation within large-scale multimodal training. Extensions of Video-LLMs (Lin
et al., 2024; Jin et al., 2024) integrate segmentation modules (e.g., SAM2 (Ravi et al., 2024)) to support
object-level grounding and reasoning Xiao et al. (2024); Yuan et al. (2025a), while modular architectures
like VITRON (Fei et al., 2024) adopt flexible encoders and decoders for comprehension, segmentation, and
generation. Although these efforts represent significant progress, most existing systems rely on static pipelines
without effective scheduling or coordination mechanisms, making them difficult to extend. This highlights the
need for frameworks that facilitate dynamic orchestration of heterogeneous modules.

Agents for Video Intelligence. Agent-based paradigms have emerged as a promising solution for flexible video
intelligence, leveraging planning, interaction, and memory mechanisms (Chen et al., 2024; Yin et al., 2023;
Wu et al., 2024a). VIDEOAGENT (Fan et al., 2024a) enhances generative quality with memory augmentation,
while other works explore agent planning for long-context reasoning (Wang et al., 2024b) and self-improving
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Figure1 Overall architecture of the proposed UniVA system, built on a Plan—Act paradigm. The Plan Agent decomposes
user input (text, image, or video) into subtasks by leveraging global memory (historical traces) and user memory
(stored materials). The Act Agent retrieves task-specific memory, executes subtasks via the MCP protocol, and
coordinates with external MCP servers (video, AI, and non-Al tools). The system generates multimodal outputs,
including text, image, video, and audio.

generation (Soni et al., 2024). Applications extend to video reasoning (Liu et al., 2) Sln et al., 2025),
editing (Wang et al., 2()2 la), stylization (Yue et al., 2025), and story generation (Hu et al., 2024). Multl -agent
collaborations such as VideoMultiAgents (I{ugo et al., 2025) and PREMIND (Wei et al., 202.r ) further enhance
performance, though communication and coordination remain open challenges. Protocols like MCP (Hou
et al., 2025) and modular plug-and-play designs offer promising directions. Departing from isolated paradigms,
our UniVA framework leverages multi-agent interaction, memory augmentation, and context engineering (Mei
et al., 2025) to unify understanding, reasoning, editing, and generation, advancing toward truly universal
v1deo agents.

3 UniVA

3.1 Problem Formulation

We formulate the challenge of synergistic video intelligence as a sequential decision-making problem. The
UniVA agent operates within an environment defined by a user’s high-level goal G and a set of available tools
T. The agent’s objective is to generate a sequence of actions A = (a1, ag,...,ay) that transform an initial
state so (which may include user-provided videos or images) into a final state sy that satisfies the goal G.

At each step ¢, the agent, guided by a policy 7 (instantiated by our Planner), observes the current state s;
and the interaction history H; = (a1, $1,...,a:—1,5t—1), and selects an action a; € 7. The execution of this
action by the Actor transitions the environment to a new state s, 11 = Execute(s;, a;). The Memory system
serves as the persistent representation of the history H; and intermediate artifacts within the state s;.

The core challenge, therefore, is to design an agent with a policy 7 that can effectively manage the state
transitions and leverage the history to produce a high-quality final state sy, demonstrating both breadth (by
utilizing a large and diverse 7)) and depth (by creating complex, synergistic action sequences A). This entire
process can be summarized as finding the optimal action sequence A* that maximizes a quality function Q of
the final state with respect to the goal:

A* = argmax Q(sn,G) where s;11 = Execute(s;,as) (1)
A=(ay,....an)



3.2 The UniVA Control Core

To achieve the aforementioned sequential decision-making framework, we designed the control core of UniVA.
This core consists of two key components: a decision engine responsible for formulating the policy 7, and a
memory system tasked with managing the state s; and history H;.

3.2.1 Plan-Act Dual Agent Architecture

The core of UniVA is a Plan—-Act dual-agent architecture. Our strategy 7 is implemented through a dual-agent
Plan-Act framework. The Planner, as a high-level policy network, maps the goal G and the current state s;
to an abstract sequence of plan. The Actor, as a low-level execution policy, converts each step of the plan into
concrete actions a;.

For example, given “make a cartoon video of my dog,” the Planner may decompose it into: (1) retrieve images
of the dog, (2) generate a cartoon-style video, (3) edit the background, and (4) compose audio. The Actor
receives each sub-goal from the Planner, selects the appropriate tool through the MCP interface, fills in
required arguments (e.g., video clip, mask, prompt), and executes the call. Once a tool finishes, the Actor
collects the output and sends it back to the Planner. This separation keeps the Planner lightweight and
strategic, while the Actor focuses on reliable and efficient tool use.

3.2.2 Memory Mechanism
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Figure 2 Memory-augmented framework for video generation. Global and user memories provide context to the plan
agent, while task memory coordinates tool calling, storyboard creation, and video generation.

A key challenge in agentic video systems is to maintain context across long and multi-step workflows. As
presented in Figure 2, UniVA addresses this with a three-level memory mechanism that complements the
Planner—Actor loop: Global Memory. Stores persistent knowledge and reusable resources, such as precomputed
embeddings, generic video facts, or tool usage statistics. This memory provides background context and
supports cross-task generalization. Task Memory. Maintains intermediate artifacts, tool outputs, and execution
traces for the current workflow. It ensures continuity across multiple steps, allowing later sub-goals to reuse
results (e.g., segmentation masks or captions) without recomputation. Task memory also enables traceability,
making the entire workflow transparent and reproducible. User Memory. Tracks user-specific preferences
and historical interactions, such as favored styles, recurring edit patterns, or personalized constraints. This
enables adaptive behaviors—for example, automatically applying a user’s preferred resolution or editing style
in future tasks.



Through this design, Global Memory and User Memory together form the persistent storage of long-term
history Hy, providing rich context for the strategy w. Task Memory maintains the dynamic state of the current
task s; and its intermediate products.

3.3 Tools Interaction

The capability of an agent ultimately depends on its available action space, i.e., the toolset T. To achieve
maximum breadth, UniVA’s action space is designed to be open and extensible.

We achieve unified management of the action space T through MCP protocol. The MCP server module acts
as a unified gateway between the Actor and a collection of distinct tool servers. The server maintains a
registry of available functions, validates and executes calls through a standardized API, and records outputs
for traceability. This design means that adding or replacing a capability only requires registering it on the
server, while the Planner and Actor remain unchanged, making the system modular and extensible. The
detailed tools list at A.2.

3.4 Framework Walkthrough
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Figure 3 Iterative tool calling for video generation. Left: one-prompt task applies a global ink-painting style. Right:
multi-round task incrementally edits via segmentation, background change, and extension, demonstrating representative
functions.

Building upon the above components, we now present the overall architecture of our framework. This
sequential decision-making process is illustrated in Figure 1. In any task, the Planner (policy 7) observes
the current state s; and the goal G to formulate a plan, which the Actor executes as a sequence of actions
A = (ay,...,an) using various tools. The Memory will record the outputs of each action, continuously
updating the history H; and the state s; for subsequent steps.



The two cases demonstrate the versatility of this framework. The left case exemplifies the agent’s depth,
autonomously decomposing a single complex goal into a coherent, multi-step generation workflow. The right
case showcases the interplay of breadth, where a diverse and extensible toolset 7, made accessible via our
MCP layer, is synergistically chained in an interactive session to achieve a precise, context-dependent editing
outcome.

3.5 System Implementation

To demonstrate the practical application of our framework, we have instantiated the UniVA agent within an
interactive, web-based video editing application, as shown in Figure 4.

0 OpenCut X + v
< C @ localhost:3000/editor/64fc4c7c-3b66-4745-a4a5-503e0ddba3b8 & & |2 e %« @ O &
< New Project 00:12:46:19

D Al Assistant

Al Video Assistant

input message...(use @ to select media)

Figure 4 The interface combines a traditional non-linear timeline and preview canvas with a conversational assistant
(left), which provides a user-friendly entry point to the UniVA agent. This design supports both one-stop, prompt-based
generation and multi-turn, interactive editing workflows.

The UniVA agent, operating in the background, parses these requests, formulates a plan, and executes the
necessary tool calls. The results are then directly reflected on the timeline and preview canvas. This tight
integration creates a fluid, iterative loop, allowing users to effortlessly switch between high-level Al-driven
creation and traditional, hands-on editing, all within a single, unified platform.

4 UniVA-Bench

4.1 Benchmark Definition

Video intelligence in practice is an iterative, multi-stage creation process where users interleave understanding,
generation, editing, segmentation, and audio/asset composition within a single workflow. However, most
existing benchmarks largely isolate single tasks and single models, which underestimates the difficulty of
long-horizon, multi-step video production and the need for explicit planning, memory, and tool orchestration.
Therefore, we introduce a unified agent-oriented benchmark that shifts the focus from isolated single-model
tasks to end-to-end, tool-augmented video intelligence, aligning evaluation with real user workflows and the
requirements of practical video agents.



To holistically assess both the range and the intelligence of an agent, the benchmark is organized into
two complementary tracks: i) Functional Modules: task performance across Understanding, Generation
(LongText2Video, Image/Entities2Video, Video2Video), Editing (long video edits with cross-shot consistency),
and Segmentation (long video segmentation with multi-entity occlusion). ii) Agentic Probing: plan quality,
dependency satisfaction, and re-planning robustness using structured plan-level metrics; analysis of memory
usage (trace, user, task/storyboard) and its downstream impact.

4.2 Tasktaxonomy

Understanding (Long-Video QA). This task is designed to target both aesthetics- and semantics-oriented
questions for long videos, encompassing shot transitions, visual style, and narrative comprehension in addition
to standard entity and action semantics. Unlike prior settings, where each QA pair is tied to a single short
clip, our task demands answering multiple interdependent questions grounded in a single long-form video.

Generation. Agents are evaluated on diverse real-world video generation tasks, categorized into three
subtypes: 1) LongText2Video, handling long or noisy prompts that necessitate storyboard-first planning; 2)
Image/Entities2Video, using 1-3 reference images to enforce identity preservation and cross-scene coherence;
3) Video2Video, conditioning on a source video while ensuring referential stability for persons and objects.

Understanding Generation

\ LongText2Video
Generate a 60-second short narrative video based on the following
sequence. 1. Pre-dawn: close-up of a paint roller gliding over a

/Given avideo. Answer those questions below :

cracked brick wall ...... 5. Golden hour: unveiling—the crowd steps
een back...... reveals the mural anchoring the neighborhood skyline.
Entities2Video

@ Information Synopsis

What is this video mainly about?

@ Transition

At 00:01, how does the video transition from the view of Earth to the
shot of the pool player?
@ Shot Angle 0-3s: A sunny beach scene shows a man throwing a stick into the
waves, his dog eagerly ...... 7-10s: The background shifts to a cloudy
sky, the waves growing stronger as the wind picks up. ....

What type of camera angle is used for the break shot at 00:08, and what

information does it primarily convey?
\ """ / Video2Video
= - “ m
- e : )

@ Story Alignment

Editing Prompt: Change the man into a woman. l Transform this animated cartoon video into a live—action cinematic style,
maintaining the same narrative, character actions, and timing---
Segmentation @ Style Alignment

Based on the characters’ appearance, animation style, and cinematography
of the given video, generate a sequel-**

@ Semantic Alignment

Keep the visual style of the original video (such as camera movement,
editing rhythm, color grading), but change the story-**

I Segmentation a gold fish swimming towards the camera. l \ /

Figure 5 Representative examples from the four main task categories in UniVA-Bench: Understanding, Generation,
Editing, and Segmentation.

Editing (Long Video). This task is defined to involve multi-step edits such as cross-shot replacement, attribute
modification, and style transfer, while maintaining narrative integrity and referential consistency. Effective
completion requires reasoning in combination with tool invocation (e.g., ref-seg — inpaint/compose — merge).

Segmentation (Long Video). Designed for long clips with multiple entities and frequent occlusions, this task
evaluates temporal consistency and robustness in detecting and segmenting shot boundaries.



Agentic probing sets. We include (1) a 50-instance storyboard—user-intent planning set to compare Single-
Agent vs. Plan-Act, and (2) a set of standard pipeline tasks with expert references to assess wPED, DepCov,
and ReplanQ under injected failures. Memory analyses consider trace memory (historical trajectories), user
memory (preferences), and task memory (e.g., storyboards).

More data curation details in Appendix B.1.

4.3 Evaluation Protocol

To evaluate agent performance on UniVA-Bench, we employ a comprehensive suite of metrics targeting three
key areas: (1) Task-specific Quality, using established metrics like CLIP Score for command following and
DINO Score for subject consistency; (2) Overall User Preference, captured via pairwise judgments from a
powerful MLLM-as-a-Judge; and (3) Agentic Planning Capabilities, assessed using our novel, specialized
metrics (WPED, DepCov, and ReplanQ) that measure plan quality, logical correctness, and recovery robustness.
The detailed definitions and calculation methods for all metrics are provided in Appendix B.2.

For Generation/Editing, we report CLIP, DINO, and MLLM preference. for Segmentation, J/F/J&F; for
Understanding, normalized QA accuracy. For agentic probing, we report wPED /DepCov/Replan(Q with and
without memory (trace/user/task) and compare Single-Agent vs. Plan-Act frameworks.

5 Experiments

To comprehensively evaluate our system’s capabilities in realistic, end-to-end workflows, we conduct all
experiments on UniVA-Bench, a novel agent-oriented benchmark we introduce in this work. Our experiments
are designed to test two central hypotheses: i) a unified agentic architecture, where functional modules like
understanding and generation are deeply integrated, provides a significant performance advantage over isolated,
end-to-end models; and ii) the combination of a dual-agent Plan-Act framework and a multi-component
memory system is essential for achieving the robust planning and persistent context required for complex
video tasks. The complete experiment settings are in the Appendix C.

5.1 Performance of Functional Modules

5.1.1 Generation

In the generation scenarios, we benchmark UniVA against three representative end-to-end models: LTX-Video
(HaCohen et al., 2024), Wan (Wan et al., 2025), and Seedance (Gao et al., 2025). Evaluating the results
using CLIP Score (prompt following), DINO Score (subject consistency), and preference ratings from an
MLLM-as-a-Judge, following the UniVA-Bench specification. Detailed baseline setups are in the Appendix.

Table 1 Comparison across LongText2Video, Entities2Video and Video2Video.

Method LongText2Video Entities2Video Video2Video
CLIP Score DINO Score MLLM Judge CLIP Score DINO Score MLLM Judge CLIP Score DINO Score MLLM Judge
LTX-Video 0.2161 0.9392 1.125 0.2210 0.8452 1.281 0.2263 0.9943 2.123
Wan 0.2028 0.6779 3.183 0.3106 0.7043 1.650 0.2632 0.9188 2.034
Seedance 0.2157 0.8836 2.650 0.3039 0.8800 2.700 0.2684 0.9518 2.621
UniVA 0.2814 0.9026 3.333 0.2868 0.8796 1.789 0.2620 0.8939 4.068

LongText2Video In the LongText2Video scenario, UniVA’s superior performance - achieving the highest CLIP
score 0.2814 and the MLLM Judge score 3.333 - is directly attributable to its agentic framework. Unlike
end-to-end models, UniVA’s Planner first parses the noisy, long-term text to distill the core user intent into
an optimal prompt. Overcoming a common shortage of traditional end-to-end models. Entities2Video In this
task, which tests the agent’s ability to maintain subject identity from reference images, the results are more
nuanced. While specialized models like Seedance show strong performance in subject consistency (DINO
Score), UniVA remains competitive. This highlights a current trade-off where our agent prioritizes overall
instruction complexity and narrative coherence, a direction for future optimization. Video2Video In the
Video2Video task, although UniVA does not lead in automated metrics such as the CLIP Score or DINO
Score, it achieves a commanding MLLM Judge score of 4.068. This apparent discrepancy shows that UniVA’s



planner excels at interpreting and executing complex instructions (e.g., 'modify the storyline while preserving
the style’). This often requires understanding of the original video then provide concise prompt to generate
new video, which will naturally lowers strict frame-level similarity (DINO score), but results in a final video
that better fulfills the user’s holistic intent.

5.1.2 Understanding

For the understanding task, we compare UniVA against several leading Large Multimodal Models, including
GPT-40 (OpenAl et al., 2024), Gemini 2.5 Pro (Google, 2023), InternVL3-38B (Zhu et al., 2025), and
Qwen2.5-VL-72B (Bai et al., 2025). Performance is measured by the normalized QA accuracy score as defined
in the UniVA-Bench protocol.

(a) LongVideo Understanding (b) Long Video Editing (c) Long Video Segmentation
Method Acc Method Editing Method Segmentation
GPT-40 0.52 CLIP DINO MLLM J F J&F
Simm\ﬁ;;;g) g'gg Vace 02258 0.6808  3.484 SA2VA  0.2076  0.0972  0.1524

nerny bo- : UniVA  0.2280 0.7488 3.635 UniVA  0.3254 0.1680 0.2467

Qwen2.5-VL-72B  0.74
UniVA 0.76

Table 2 Comparison of UniVA on three long video tasks: Understanding, Editing, and Segmentation.

In Table 2a, our UniVA agent achieves the highest accuracy of 0.76. Prove the agent’s ability to decompose the
video and the complex query into manageable sub-tasks leads to a more accurate and holistic understanding
than what a single inference from a base model can provide.

5.1.3 Editing

For long video editing, we compare against Vace (Jiang et al., 2025), a strong baseline for video editing tasks.
Metrics include CLIP Score, DINO Score, and MLLM preference.

In Table 2b, it can be observed that, in traditional non-unified setup, an editing model would be disconnected
from a deep, continuous understanding of the video. UniVA bridges this gap. The agent first leverages the
integrated Understanding module via the Probing tool to establish a persistent semantic context, allowing the
agent to ground editing objects on long-term, cross-shot video to apply its editing actions.

5.1.4 Segmentation

In the challenging long video segmentation task, we use SA2VA (Yuan et al., 2025a) as our primary baseline.
We report the J-mean, F-mean, and J&F-mean scores.

In Table 2¢, UniVA outperforms the best scores on all metrics. Because UniVA can query the co-located
Understanding module to resolve ambiguities that are impossible to solve at the pixel level. For instance,
when an object is occluded, the agent can ask the Probing tool: "Based on the narrative context, is the object
reappearing at timestamp X the same ’blue car’ from timestamp Y?" This ability to dynamically leverage
a powerful understanding module to inform a perception task like segmentation is a unique benefit of our
integrated design.

These 4 experiments demonstrate that a unified agentic architecture is critical for advancing video intelli-
gence. The superior performance of UniVA is not merely due to the quality of its individual modules but
stems from the tight coupling and dynamic interplay between them.
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5.2 Agentic System Probing

5.2.1 Planning Capability

In this section, we probe the core agentic capabilities of our system, moving beyond output quality to analyze
the underlying planning and memory mechanisms. We first validate our choice of a Plan-Act framework and
its Planner LLM component.
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Figure 6 Performance of Planner LLMs. Figure 7 Framework comparison

To select the optimal Planner for our framework, we evaluated three leading LLMs on key agentic metrics
(Figure 6). Claude-Sonnet-4 demonstrated superior performance in DepCov and ReplanQ. Since correctly
identifying task dependencies and robustly recovering from failures are paramount for a reliable agent, we
selected Claude-Sonnet-4 as the Planner for all subsequent experiments.

In Figure 7, Success Rate is the percentage of test cases where the agent produced a structurally valid plan
(i.e., wPED > 0)—measuring the agent’s ability to avoid catastrophic failures, such as generating an empty or
malformed output. It more than doubles the Success Rate (45.0% vs. 20.0%), indicating a much lower rate of
catastrophic failures. Furthermore, the quality of its successful plans is also over twice as high, reflected in a
wPED score of 0.117 versus 0.050. This confirms that the explicit planning stage can not only output valid
plans but also high-quality plans.

5.2.2 Memory Capability

We then analyze the distinct contributions of our three memory modules. To isolate their effects, we designed
specific experimental probes: (i) Global Memory was tested by providing the agent with a set of trajectories
from an expert planning dataset; (ii) User Memory was evaluated in the Entities2Video task, where the agent
could retrieve user-provided reference images via a RAG mechanism; and (iii) Task Memory was assessed in
the LongText2Video task by comparing the performance of generating with and without a storyboard.
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Figure 8 Effect of trace memory. Figure 9 Effect of user memory. Figure 10 Effect of storyboard.

In Figure 8, across most cases, the agent with global memory (the dark blue line) achieves a higher wPED
score than without global memory (the light blue line). This indicates that by drawing on past trajectories,
the agent becomes better at aligning its generated plans with expert-preferred structures. And most strikingly,
global memory prevents catastrophic planning failures. In numerous instances (e.g., turns 3-5, 8-10, 14, and
18-20), the agent without global memory completely fails to produce a viable plan, resulting in a wPED
score of zero. However, agent with global memory not only succeeds but often produces high-quality plans.
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Figure 9 shows with the user memory, agent can better understand the indications of the user, such as when
user refers to a cat, user memory can make agent has the ability to find the cat image from user’s materials.
Making the generated content more aligned with user intent. Utilizing storyboards as task memory (Figure 10)
provided a substantial boost across all quality metrics. This demonstrates that maintaining an intermediate
representation of the creative goal is essential for ensuring semantic coherence and cross-shot consistency in
the final video, directly validating the storyboard’s role in our agent’s workflow.

In summary, our dual Plan-Act Agent framework improves the ability to process complex tasks. Also,
three memory mechanisms help the agent to build a persistent context, to be more robust, better user
intent understanding, and more consistent in generated videos.

5.3 Human Evaluation

To complement our automated evaluations and validate the MLLM-as-a-Judge, we conducted a formal human
evaluation study. The primary goal is to determine if the MLLM-as-a-Judge corresponds with the subjective
preferences of human annotators. We focus on the video generation tasks (LongText2Video, Image2Video,
and Video2Video). We collected generated video results from both our UniVA system and the baseline models
for each task. Annotators were asked to judge each video based on a set of criteria identical to MLLM.

5 L 1 1 1 1 1 _

Average Score Across All Tasks

Semantic Multi-object & Action/Behavior Attribute Style
Accuracy Spatial Relations Accuracy Fidelity Consistency

| Seedance s wan X N yniva

Figure 11 UniVA accurately generates the sequential process of pottery making, demonstrating strong temporal
consistency and object persistence as the bowl evolves from clay to a finished product.

UniVA (darkest blue bar) emerges as the clear leader, achieving the highest human preference scores in four
out of the five evaluated dimensions. This strong human preference aligns with the patterns observed in our
automated metrics, confirming that our MLLM judge is a reliable proxy for genuine human perception.

5.4 Qualitative Case Studies

To provide a more intuitive understanding of these quantitative results, we present a series of qualitative case
studies. These examples visualize how UniVA’s unique capabilities in planning and synergy lead to superior
outcomes in complex narrative scenarios. For more demo videos or real experience, please direct to the project
site: http://univa.online/.

6 Conclusion

In this work, we introduced UniVA, a unified agentic framework designed to tackle the next frontier of
video intelligence. We argued that progress in video domain requires a paradigm shift from developing
isolated, single-task models to creating integrated systems capable of complex, collaborative workflows. To
this end, our primary contributions were the development of the powerful and extensible UniVA platform, the
demonstration of its emergent synergistic capabilities, and the release of UniVA-Bench to rigorously measure
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Please generate a 30-second short documentary video based on the following story beats. 1. Close-up of clay meeting
a spinning wheel; fingers press and a rib tool carves spirals as slip flicks outward under warm studio light. 2.
Over-the-shoulder time-lapse: the vessel rises from cylinder to wide bowl; wet sheen glistens while the wheel slows.
3. Kiln-loading montage: .. line patterns emerge. 5. Morning reveal: final bowl on a wooden table beside steaming
tea; the potter signs the foot and exhales in quiet satisfaction.

o G

Figure 12 UniVA accurateiy generates the sequential process of pottery making, emonstrating strong temporal
consistency and object persistence as the bowl evolves from clay to a finished product.

0-3s: A man walks down a bustling city street at night, illuminated by vibrant neon lights and signs. He is dressed in a formal suit and
tie, holding a smartphone, engrossed in its screen. The background features tall buildings with lit-up windows, creating a lively urban
atmosphere. 3—7s: The camera slowly zooms in on the man’s face, capturing his focused expression as he types on his phone. The
neon lights reflect faintly on his glasses. ...... 21-25s: The camera returns to the man, now seated on a bench in the park, still
holding his phone but looking more relaxed. The city skyline is visible in the distance, blending the urban and natural elements. 25—
30s: The camera slowly zooms out, showing the man in the peaceful park setting as the city awakens in the background, completing
the visual and narrative transition.

Figure 13 UniVA maintains the protagonist’s identity flawlessly across drastically different scenes, lighting conditions
(night vs. day), and camera angles, showcasing its advanced capability for robust, long-form character preservation.

Recreate a new video that mirrors the original’s style—cinematic transitions, lighting, pacing, and tone—but tells the story of an elderly man reliving his youth

through a dreamlike journey across time.

Figure 14 UniVA interprets an abstract prompt to generate a complex narrative. It orchestrates a non-linear story arc,
proving its capability as an intelligent storyteller powered by sophisticated planning.

such advancements. Our experiments validate UniVA’s breadth, demonstrating competitive performance
across a wide array of video tasks. More profoundly, we reveal its depth: through "Agentic Synergy", enabled
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Please generate a 20-second advertising video based on the following product advertising requirements. 1. Kneading dough in hands, close-up shot, highlighting the
texture of the dough. 2. Sprinkling cherry blossom petals on freshly baked bread, slow motion close-up. 3. Customers taste bread in the store and show satisfied
smiles. 4. The brand logo appears, with the text: '‘BreadTalk'.

Figure 15 UniVA generétes a coherent 20-second commercial that accurafely follows the structured sequence of
requirements—from kneading dough and showing customer reactions to applying the final brand logo.

f ' dsl:xuie
v
’

fwitter blog

Create a prequel to the original video that introduces the backstory of the same characters, matching their look, voice, and animation style, but telling a different
story that leads into the original events.

Figure16 Given an original video, the agent not only maintains the original characters’ style but also logically constructs
a new backstory.

Figure 17 UniVA successfully applies a "Chinese ink-painting style" to the visuals while precisely maintaining the
original video’s plot, character motion, and scene composition.
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by the dynamic management of information flow between tools, UniVA solves complex consistency problems
intractable for siloed models. This confirms that UniVA is not merely a collection of tools, but an engine for
generating emergent intelligence. We hope that UniVA and UniVA-Bench will inspire future video intelligence
research into this new generation of integrated, synergistic Al systems.
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Appendix

A Detailed Methodology

Since UniVA integrates multiple functionalities within a large-scale system, it is essential to clarify its design
philosophy. In this section, we present the guiding principles and functional workflow that underpin the
framework, providing a comprehensive view of our design.

A.1 Principles

Here we provide a set of design principles that guide the construction of our UniVA framework.

1. Unified & Modular Architecture. A comprehensive and extensible system requires a modular architecture. In
UniVA, all capabilities—from SOTA generation models to simple non-Al tools—are integrated as decoupled
functional modules. These modules are invoked via a unified Model Context Protocol (MCP), allowing
them to be updated or replaced in a plug-and-play fashion. This principle is the foundation for the system’s
industrial-level production capabilities and ensures it can consistently deliver cinematic-quality output by
leveraging the best available tools.

2. Separation of Plan & Act for Complex Workflows. At the core of the agent’s operation is a strict Plan-Act
separation, which realizes the dual agent architecture described previously. A Planner agent interprets
high-level user intent and decomposes it into a logical sequence of steps. An Executor agent then carries out
each step by invoking the appropriate tools. This separation is crucial for managing long-horizon tasks and
allows the system to robustly handle complex, multi-step video production pipelines.

3. Proactive, Goal-Oriented Autonomy. Crucially, the Planner is more than a passive task decomposer; it is
designed for a high degree of automation and proactive behavior. The agent actively evaluates intermediate
results against the inferred user goal. If an output does not align with the objective—as shown in the teaser,
where the agent decides a video is insufficient—it initiates self-reflection to flexibly adapt its plan. This ability
to autonomously course-correct is the key to accomplishing an entire production pipeline from a single user

query.

4. Hierarchical Memory for Immersive Interaction. The framework’s multi-level memory mechanism is what
enables iterative, multi-round interactions and deeply immersive creative experiences. This hierarchy consists
of global memory for persistent knowledge, task-specific memory to maintain context for the current workflow,
and user memory to track preferences. This design ensures contextual continuity, allowing users to refine and
build upon their creations over extended interactions.

5. Composition of Atomic Operations into Robust Workflows. To effectively handle the composite and iterative
workflows mentioned earlier, the framework strikes a balance between flexibility and reliability. All complex
functionalities are built upon a set of fine-grained atomic operations. The Planner can creatively combine these
atomic operations to solve novel problems. For common, high-stakes tasks, these operations are organized
into pre-defined workflow patterns to ensure robust and predictable execution. This dual approach provides
the system with both the versatility for creative exploration and the stability required for industrial-grade
production.

Figure 3 showcases how UniVA’s components work in synergy, revealing both its depth in handling complex,
autonomous tasks and its breadth in supporting interactive, multi-tool creation.

The one-prompt task (left panel) exemplifies the system’s depth. Faced with a complex command, the Plan-Act
agent autonomously decomposes the goal and orchestrates a sequence of tools via the MCP Servers. By
managing the information flow through the Memory Mechanism, it effectively connects different capabilities,
such as using an understanding tool to empower a generation tool. This enables the agent to collaboratively
use multiple tools to achieve a sophisticated goal in a single pass.

Conversely, the multi-round task (right panel) highlights the system’s breadth. It provides a powerful platform
with a wide array of tools that users can flexibly combine through iterative interaction. Each command triggers
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a new Plan-Act cycle, where the agent leverages context from the Memory Mechanism (e.g., a segmentation
mask) to execute the next step. This demonstrates how our architecture supports a flexible, stateful, and
collaborative creative process.

A.2 Function Walkthrough

UniVA is equipped with an extensive, modular toolset integrated via the Model Context Protocol (MCP). This
“plug-and-play” architecture enables the agent framework to invoke a diverse range of specialized functions.
As shown in Figure 18, these tools are organized into three main categories: Video Tools, Non-Video Tools,
and Non-AT Tools.

Each function is classified as either an [Atom] or a [Workflow]:
e [Atom]: A fundamental, single-purpose operation, such as generating an image from text.

e [Workflow]: A higher-level function that composes multiple atomic tools to complete a multi-step task,
such as generating an entire story video.

A.2.1 Video Tools

This core category encompasses functionalities for video creation, modification, and analysis.

Video Editing. Provides granular control over the visual elements within a video.

e swap_object_tool [Atom]: Swaps objects in a video with those from a reference image.

e repainting [Atom]: Repaints or replaces specific objects within a video.

e depth_modify [Atom]: Edits the foreground or background of a video using depth information.

e recolor [Atom]: Recolors an entire video or modifies the colors of specific regions.

e pose_reference [Atom]: Transfers poses and movements from a source video character to a new one.

e style_transfer [Atom]: Applies a specified artistic style to a video.

Video Generation. Creates new video content from various inputs.

e text2video_gen [Atom]: Generates short videos (approx. 5s) from text descriptions.

e image2video_gen [Atom]: Generates videos from a text prompt and an image reference.

e video_extension [Atom]: Extends a video by generating subsequent frames.

e frame2frame_video_gen [Atom]: Generates a video transitioning between a start and end frame.

e storyvideo_gen [Workflow]: End-to-end story video generation, including storyboard, characters,
keyframes, and audio.

e entity2video [Workflow]: Generates a coherent video using a set of character images.

Video Tracking. Identifies and isolates objects or regions within a video.
e referring_segmentation [Atom]: Segments video objects based on text prompts.

e video_all_segmentation [Atom]: Segments all detectable objects in a video and outputs their masks.

Video Understanding. Analyzes and extracts semantic information from video.
e vision2text_gen [Atom]: Generates a textual description of a video’s visual content.

e video_timestamp_analysis [Atom]: Analyzes specific frames, with optional segmentation for focused
analysis.

e main_object_analysis [Atom]: Locates and describes the main objects in video scenes.
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swap_object_tool H[Atom] Swap objects in video with reference image objects.

repainting H[Atom] Partially repaint or replace specific objects in video.

depth_modify H[Atom] Edit foreground/background using depth information.

Video Editing

pose_reference H[Atom] Transfer poses from video to new characters.

style_transfer H[Atom] Convert video to a specified artistic style.

text2video_gen }—[ [Atom] Generate short videos (5s) from text descriptions.

image2video_gen }—[ [Atom] Generate videos using text and image references.

video_extension }—[ [Atom] Extend videos by generating from the last frame.
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—
-E I video_timestamp_analysis — [Atom] Analyze specific frames with optional segmentation.
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g
£
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— I JJ
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Figure 18 A three-level taxonomy of MCP tools: modules (level-1), tools (level-2), and leaf boxes summarizing name,
type, and functionality.
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e longvideo_understanding [Workflow]: Analyzes long videos to provide detailed summaries and insights.

A.2.2 Non-Video Tools

This category includes functionalities for audio and image creation, editing, and synchronization.

Audio Generation.

e video_foley [Atom]: Create and sync sound effects (foley) to visual events.

e speech_gen [Atom]: Generate speech from a text prompt.

e speech_to_text [Atom]: Transcribe speech to text with timestamps (ASR).

e voice_clone [Workflow]: Clone a target voice from a few samples for later TTS.

e music_gen [Atom]: Generate background music from text (mood, style, scene).

Image Generation.
e text2image_generate [Atom]: Generate images from text prompts (e.g., mj-chat, flux-kontext).

e image2image_generate [Atom]: Generate a new image from a prompt conditioned on an input image for
style/identity consistency.

e image_editing [Atom]: Edit existing images (inpaint, retouch, composite).

A.2.3 Non-Al Tools

This category provides deterministic utilities for cutting, merging, and augmenting video materials.

Video Cut.

e merge_video [Atom]: Merge multiple clips into a single sequence.

e add_transition [Atom]: Add transitions between clips (fade, wipe, slide).
e add_subtitle [Atom]: Add subtitles.

e materials_search [Atom]: Search royalty-free images/videos by keyword (e.g., Pixabay, Unsplash).

B UniVA-Bench

B.1 Data Curation

Understanding (Long-Video QA). We randomly sampled 10 videos from Video-MME Fu et al. (2025) and
used Gemini 2.5 Pro to generate multiple-choice QA pairs based on the perspectives shown in Table 3. The
task specifies that each video corresponds to 10 questions, and all answers must be provided within a single
inference.

Generation. In the data curation stage, for the LongText2Video task, we first use GPT to generate a clear
storyboard, then rewrite it into long and noisy prompts. For the Image/Entities2Video task, we first sample
10 data points from Opens2v-nexus Yuan et al. (2025b). We then rewrite the original prompts into longer
and noisier versions.

For the Video2Video task, in order to better approximate real-world scenarios, we divide it into three settings:
Story alignment: Given a video, modify its style according to the prompt while keeping all other aspects
unchanged. Style alignment: Given a video, modify the storyline according to the prompt while preserving the
original video’s style, characters, and semantics. Semantic alignment: Given a video, modify both the style
and storyline according to the prompt while retaining the original characters and other semantic elements
(e.g., generating a sequel to the video). For each task, we sampled 10 videos from SF20k Ghermi et al. (2024),
then manually generate prompts for each video.
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Table 3 Key dimensions for analyzing video shots and editing.

Category Dimension

Shot Size

Shot Angle

Shot Location

Shot Subject

Shot Type (composition)
Shot Color (grading/tonality)

Intra-frame

Shot Motion (camera movement)
Shot Speed

. Cut Type
10. Transition

Intra-shot

O N DTN

Inter-shot

Editing (Long Video). We sampled 10 videos from SF20k Ghermi et al. (2024), then manually curated the
editing prompt based on the content of the video.

Segmentation (Long Video). We randomly concatenated clips from DAVIS2017 Perazzi et al. (2016), resulting
in 10 segmentation task instances that involve occlusions and cover diverse scenes.

Agentic probing sets. We include (1) a 50-instance storyboard—user-intent planning set to compare Single-
Agent vs. Plan-Act, and (2) a set of standard pipeline tasks with expert references to assess wPED, DepCov,
and ReplanQ under injected failures. Memory analyses consider trace memory (historical trajectories), user
memory (preferences), and task memory (e.g., storyboards).

B.2 Metrics

B.2.1 Subject metrics (task quality).

CLIP Score (command following). Measures text-video alignment between the user instruction (or storyboard-
derived captions) and generated/edited outputs. We report the average CLIP similarity over sampled
frames/clips; higher is better. DINO Score (subject consistency). Measures referential /identity stability by

comparing DINO features between reference entities (images/key frames) and generated/edited frames; the
higher the better. Segmentation: J/F/mloU. We report region (J-mean, IoU) and boundary (F-mean) quality,

as well as J&F-mean; higher is better. Understanding score. Normalized accuracy over curated long-video QA

pairs that span both semantics and aesthetics (shot transitions, style, narrative).

B.2.2 MLLM as ajudge (preference).

To complement subject metrics, we perform pairwise preference judgments using an open-source judge (e.g.,
InternVL-3-78B) and a closed-source judge (e.g., Gemini-2.5-pro). Judges are provided with the instructions,
any relevant references, and debiased captions; preferences are aggregated via majority voting, with ties being
discarded. We report average preference rates and include significance tests when applicable.

To ensure consistent and unbiased evaluation, we used a standardized prompt template for our MLLM judge.
The template was designed to be comprehensive and force a structured output.

[System Role] You are a rigorous multi-modal video evaluation expert (MLLM as a judge). Based
only on the provided frames/timestamps and text/control information, evaluate a single video with
structured scoring and traceable evidence. Do not hallucinate unseen content.

C1. Semantic Content Accuracy (Objects & Scene) - What to check: Are the specified object categories
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present and correct? Is the overall scene type (nature/city/indoor/outdoor/weather /terrain) correct
and stable? - Typical evidence: timestamps where required objects/scenes appear (or fail), brief notes
on correctness. - Anchors: 1: Objects/scenes largely wrong or missing; persistent mismatch in most
segments. 2: Frequent mismatches; objects or scene type often incorrect or unstable. 3: Mostly correct
but with noticeable lapses (e.g., brief wrong class or scene drift). 4: Correct and stable with only minor
slips in a few moments. 5: Fully correct and stable throughout; no contradictory frames observed.
C2. Multi-Object & Spatial Relations - What to check: Correct object count, arrangement, occlusion,
and relative relations (above/below, inside/outside, left /right, front/back) consistent with perspective.
- Typical evidence: frames showing relation satisfaction/violation (e.g., “cup above plate”). - Anchors:
1: Major errors in count/placement; relations frequently wrong or contradictory. 2: Multiple wrong
relations or unstable layouts; occlusion frequently implausible. 3: Largely correct with occasional
conflicts or transient misplacements. 4: Almost entirely correct; rare, minor inconsistencies. 5: Fully
correct and stable; relations clear and consistently maintained.

C3. Action / Behavior Accuracy (Human or Specified Agent) - What to check: If the prompt specifies
actions/poses (“running,” “waving”), are they clear, continuous, and recognizable? If no action is
specified, set null. - Typical evidence: timestamps covering onset /continuity /completion of the action. -
Anchors: 1: Action absent or clearly wrong most of the time. 2: Frequent mismatches or fragmentation;
hard to recognize the intended action. 3: Generally matches, but with noticeable distortions or brief
interruptions. 4: Clear and continuous match, with minor imperfections only. 5: Strong, consistent
match; clear start-to-end execution with no ambiguity.

C4. Attribute Fidelity (Colors & Specified Attributes) - What to check: Specified attribute values
(color, pattern/material, key part attributes) are correct and temporally stable for the intended targets.
- Typical evidence: timestamps where attributes are accurate or drift (e.g., jacket color switches). -
Anchors: 1: Attributes largely wrong or unstable; frequent drift or contradictions. 2: Many errors
or drifts; correctness not sustained over time. 3: Mostly correct with occasional small drifts or brief
miscoloring. 4: Accurate and stable with rare, subtle deviations. 5: Fully accurate and stable across
the evaluated span.

C5. Style Consistency (Appearance & Cinematic Movement) - What to check: (a) Visual /appearance
style (oil painting, cyberpunk, monochrome) matches the prompt AND remains consistent; (b) Camera
grammar/movements (zoom/pan/dolly/tilt, etc.) match the prompt and remain consistent. - Typical
evidence: timestamps showing style adoption/drift; note which sub-aspect (appearance or camera)
deviates. - Anchors: 1: Style severely mismatched or mostly absent; camera grammar opposite or
missing. 2: Frequent mismatches or drift in either appearance or camera style. 3: Generally matches
with occasional drift or brief instability. 4: Clear and consistent match with only slight, rare issues. 5:
Fully consistent in both appearance and camera grammar throughout.

C6. Overall Video—Text Consistency (set null if no text prompt) - What to check: Holistic semantic
alignment between video and text (theme, scene, actions, style coherence). This is a summary
dimension; do not double-count fine-grained issues already noted above. - Typical evidence: timestamps
representing core theme fulfillment or contradictions. - Anchors: 1: Largely mismatched; core theme
or requirements not met. 2: Many inconsistencies across key elements (theme/scene/action/style). 3:
Mostly correct with noticeable errors in secondary aspects. 4: Overall consistent with small mismatches
that do not change the theme. 5: Highly consistent; strong semantic agreement with the text prompt.

B.2.3 Agentic metrics (planning & recovery).

To quantitatively evaluate the agent’s planning capabilities, we designed three specialized metrics: Weighted
Plan Edit Distance (wPED), Dependency Coverage (DepCov), and Re-planning Quality (ReplanQ). The

precise definitions and calculation methods for these metrics are detailed below.

wPED (Weighted Plan Edit Distance) wPED measures the structural similarity between the sequence of tool

names in an agent-generated plan (Pp,cq) and an expert-authored reference plan (P,.f). The score is derived

from the classic Levenshtein edit distance, denoted as L(A, B), which calculates the minimum number of

single-item edits (insertions, deletions, or substitutions) needed to transform sequence A into sequence B.
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The wPED score is calculated by normalizing this distance and inverting the result, ensuring that a higher
score indicates a better alignment. The formula is:

L(Pp'red7 Pref)

PED =1 —
v max(len(Ppreq), len(Prey))

(2)

A higher wPED score (closer to 1.0) signifies a closer structural alignment to the expert plan.

DepCov (Dependency Coverage) DepCov evaluates the logical correctness of a generated plan (Ppreq) by
measuring its adherence to a set of fundamental, rule-based dependencies inherent to video production
workflows. Our evaluation is based on a predefined set of rules, such as the principle that content generation
must precede content editing.

Let D(Ppreq) be the set of all dependency pairs (u,v) identified in the plan P,..q according to our rules,
where tool u must appear before tool v. Let Dyt (Ppred) C D(Ppreq) be the subset of those pairs where this
ordering is correctly satisfied. DepCov is then the fraction of satisfied dependencies:

|Dsat(Ppred)|
|D(Pp7'€d)|

A higher DepCov score indicates that the agent’s plan is more logically sound and respects the procedural
constraints of the task.

DepCov = (3)

ReplanQ (Re-planning Quality) Replan(Q) measures the agent’s ability to efficiently and effectively recover from a
simulated execution failure. The metric is designed to reward intelligent, minimal plan modifications.

Let P,.;4 be the agent’s initial plan, and let the failure occur at index . The agent then generates a revised
plan, Prepian. We compare the suffixes of both plans starting from the failure point, denoted as P,;4[i :] and
Prepianli :]. ReplanQ is calculated using the same normalized Levenshtein distance as in wPED, applied only

to these suffixes: ) ]
L(Porig[z :]7 Preplan[z ]) (4)
max(len(Porigli 1), len(Prepranli ]))

ReplanQ =1 —

A higher ReplanQ score (closer to 1.0) indicates a more efficient and robust recovery, suggesting that fewer
changes were required to correct the plan after the failure.

C Detailed Experiment Settings

C.1 UniVA’s Configuration

Plan Agent: Claude-sonnet-4, Act Agent: Claude-sonnet-4, Video Generation Model: Seedance-v4-480p,
Video Understanding Model: InternVL3-38B, GPT-5, Video Editing: Runway Aleph, Video Segmentation:
SAM-2, Image Generation Model:flux-kontext-pro

C.2 Baseline Configurations

Generation For all video generation tasks, we standardized the output resolution to 480p and a frame rate
of 24 fps to ensure a fair comparison. For baselines that natively lacked support for multi-image or video-
conditioned inputs, we implemented a standardized pre-processing pipeline to bridge the capability gap:
For the Entities2Video task, where some baselines only accept a single image, we first merged the multiple
input reference images into a single composite image. This composite was then used as the input. For the
Video2Video task, for text-only baselines, we first employed a video captioning model (Qwen2-VL-72B) to
generate a detailed description of the source video. This generated caption was then prepended to the user’s
instruction prompt to guide the generation process.

The specific baseline models were configured as follows: LTX-Video: We utilized the official model and followed
the recommended settings provided in their public repository. Seedance: We used the seedance-v1-pro-t2v-480p
and seedance-v1-pro-i2v-480p from Wavespeed API, consistent with our UniVA’s generation module, to ensure
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a direct comparison of the agentic framework’s contribution. Wan: We used the wan-2.2/t2v-480p and
wan-2.2/i2v-480p also via the Wavespeed API.

Understanding. For all the understanding tasks, we are using a frame rate of 1 fps and a maximum of 128
frames.

Editing. For the video editing task, we use Runway Aleph as the baseline model. In the baseline pipeline,
videos are clipped into 5-second clips and sent to the Aleph model with a task prompt. Then, the edited
video clips are merged together for evaluation.

Segmentation. For the video segmentation task, we use Sa2Va-4B as the baseline model, we directly send the
video into the baseline model together with the segmentation prompt.
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